--- title: "cleanYourFrame" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{cleanYourFrame} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r message=F, warning=F} library(framecleaner) library(dplyr) ``` Data imported from excel and csv in business situations can have messy characteristics and data formats. This package provides functions to tidy your data frame using the power of `tidyselect`. **create sample data** ```{r} tibble::tibble( date = c("20190101", "20190305", "20201012"), numeric_val = c(1, NA, 5), char_val = c("", " val ", "-") ) -> sample_table sample_table ``` # set nas Data occasionally has different ways to represent NA values. `set_na` checks as default `c("-", "", " ", "null")` but any values can be supplied to automatically be set to NA. This is helpful when you want to check the NA profile of a data frame using `validata::diagnose` ```{r} sample_table %>% make_na() ``` # remove whitespace remove whitespace from the ends of character variables that may be otherwise undetectable by inspection. ```{r} sample_table %>% remove_whitespace() ``` # set dates automatically convert character columns that should be dates. ```{r} sample_table %>% set_date() ``` # relocate all relocates an unorganized dataframe using heuristics such as putting character and date columns first, and organizing by alphabetical order. ```{r} sample_table %>% relocate_all() ``` # clean frame Wrapper function to apply all cleaning operations to a data frame using sensible defaults. ```{r} sample_table %>% clean_frame() ``` # fill nas use tidyselect to fill NAs with a single value ```{r} sample_table %>% fill_na() ```